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Anharmonic potentials in supercooled liquids: The soft-potential model

U. Zirche and T. Keyeb
Department of Chemistry, Boston University, Boston, Massachusetts 02215
(Received 23 October 1996

Instantaneous normal mod@blM) are the harmonic approximation to liquid dynamics. This is an extension
of the phonon description of lattice dynamics, in which case Bloch’s theorem shows that all modes are
extended. Long-range order is destroyed in liquids and glasses, and the INM spectrum has contributions from
both extended and localized modes. We use the soft-potential mode to describe localized modes. This model is
a high-temperature extension of the standard two-level-system model for glasses. The equilibrium position of
any atom in the liquid has only temporary character, and relaxation processes in the liquid are associated with
particles hopping over potential energy barriers. Barrier tops have negative curvature so that an INM spectrum
has an imaginary frequendynstable lobe in addition to the conventional stable mode contributions; con-
versely the unstable modes carry information about diffusion. We derive analytic expressions for the frequency
and temperature dependence of the unstable lobe that are in agreement with results from computer simulations.
Self-diffusion of particles in the liquid is governed by the fraction of unstable modes originating from double-
well potentials. For the diffusion constant, we find a crossover behavior from Arrhenius temperature depen-
dence to Zwanzig-Bssler dependence. We find an explicit expression for the distribution of barrier heights. In
agreement with Stillinger’s inherent structure approach to glass-forming liquids, this distribution is uniform, or
Gaussian, for high and low temperatures, respectiy&§063-651X97)03706-9

PACS numbeps): 47.10+g, 63.50+x, 64.70.Pf

[. INTRODUCTION a Debye spectrum, characterized by longitudinal and trans-
verse sound velocities. Jumps between different cells are
Unlike liquids, solids are capable of elastic resistance tacharacterized by a waiting time distribution, approximated
shear stress. It is this property that explains tigeidity of by a single exponential function. The diffusion constant then
solids and thefluidity of liquids. The rigidity of solids is in ~ follows from a Green-Kubo formula and obeys a Stokes-
agreement with the concept that atoms in a solid oscillat&instein law. However, as noted already by Zwanzig, this
around mechanical equilibrium configurations. Neverthelessargument does not give an independent estimate for the rate
Maxwell suggested that despite the characteristic fluidity ofof jumps between cells.
liquids, atoms in a liquid vibrate around equilibrium posi-  This solidlike approach to liquid dynamics has gained re-
tions [1]. In order to reconcile this apparent contradiction,newed attention in recent years primarily from molecular-
Frenkel pointed out that for any atom in a liquid, its equilib- dynamics simulationf4,5]. Expanding the total potential en-
rium position is not permanent but rather has temporargrgy around some arbitrary configuration, the second term
charactef2]. Each atom performs oscillations about an equi-defines the dynamic matrix. The eigenmodes of the liquid
librium position during a certain timey, (“Maxwell time” ),  (“instantaneous normal modes,” INMare then defined by
until the atom jumps to a new equilibrium position at somediagonalizing the dynamic matrix. Unlike the spectrum of a
distance, which is of the same order of magnitude as theolid, the INM spectrum consists of both stabie?t-0) and
mean distance between adjacent atoms. In this new positionnstable 2<0) eigenfrequencies. Unstable modes lead to
the atom is surrounded, partially at least, by new neighborsan exponential time dependence and may be identified with
Zwanzig evokes a similar picture of liquid dynamics in barrier crossings between two equilibrium configurations in
his derivation of the relation between self-diffusion and vis-the liquid. In fact, a relation has been proposed between the
cosity of liquids(Stokes-Einstein relatiod3]. Local minima  fraction of unstable mode$,=[;p,(v)dv and the self-
of the potential energy surface of a many-body system divideliffusion constantD ~TY?f ,/(1—f,) [4,6]. Here,p,(v) is
the configuration space of the system into smaller “cells.” the density of unstable modes and=iv.
Most of these cells are expected to correspond to amorphous Diagonalization of the dynamic matrix yields three zero
configurations, while others correspond to crystalli@@ modes corresponding to rigid translations in three perpen-
slightly disorderedl configurations. The atoms perform ap- dicular directions. The remaining modes give the INM spec-
proximate harmonic oscillations around their respectivetrum that shows a linear behavior arouad-0, p(w)~|w|
equilibrium positions until the liquid finds a saddle point on (using the standard convention that the imaginary lobe is
the potential energy surface and jumps to another cell. Zwarplotted along the negative frequency axiBor a system of
zig assumes that these harmonic oscillations are described BY0 soft spheres, it was shown that the unstable part of the
INM spectrum contains both extended and localized modes
[7]. Such localization is a consequence of structural disorder

*Electronic address: zurcher@chem.bu.edu in the system and has previously been found for the same
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analyzed in Ref[7]. It was found that modes with<<v.  finding gives a microscopic basis for the “two-level-
correspond to saddle points in single-well potentials, whilesystem” model (TLS) describing low-temperature thermal
modes withv> v correspond to the system being near theand kinetic properties of amorphous solifi$8,19. For
top of double-well barriers. Lennard-Jones systems, localized modes were identified in
The fraction of unstable modes increases with increasingomputer simulations and their relation to TLS was dis-
temperature. The temperature and frequency dependence afssed20]. A quantitative method was developed for find-
the unstable INM spectrum was analyzed by Keyes for liging TLS’s in computer simulations, and a universal theory of
uids in the supercooled phak# and by Vijayadamodar and low-temperature properties of structural glasses was pro-
Nitzan for liquids in the normal phadd0]. In the normal posed in Ref[21]. Glassy anomalies between 1 and 10 K
phase, the density followp,(v)=Avexp(—B/4T), while  have been attributed to additional states coexisting with
the temperature dependence is stronger in the supercoolé@und waves. In neutron-scattering experiments, these addi-
phase,p,(v) = Avexp(—Crv¥T?). Here, units are such that tiqnal modes have been shown to be soft harmonic vibrations
k=1, A is a temperature-dependent prefactor, &dnd with a crossover to a}nharmomcny at_ the low frequency e_nd
C are constants. Because unstable modes with, do not [22]. The soft-_pote_ntlal model o_lescrlbes both the tunn_elmg
contribute to transport in the liquid], the diffusion constant f%”d the soft vibrational modes in a glg£s], via the addi-
is proportional to the fraction of unstable modes with fre-tion of two parameters to the standard tunnellng mode_I. One
quenciesv>v, i.e.,Def/=[" p,(v)dv. In turn, this rela- pgrameter IS thg frequency of the Iqwe;t maximum n the
cr e u-JylPu ' vibrational density of the states and is directly accessible to
tion suggests an exponential temperature dependence of tBRperiment. The second parameter is the product of the ef-
viscosity, »~1/D. We have Arrhenius temperature depen-fective mass and the square of the atomic displacement, at
dence in the normal phasejr-constT [11], and Zwanzig-  which the anharmonic part of the potential is dominant. This
Bassler temperature dependence in the supercooled phasscond parameter thus describes vibrational localization and
In?~const/T? [12]. anharmonicity in the glass. The number of particles partici-
The glass temperature is arbitrarily defined as the tempating in a localized mode has been estimated to be 10—-100
perature at which logn=13 (with [7]= poise). Angell [23].
proposed a classification of glass-forming liquids that is In this paper, we show that the frequency and temperature
based on the temperature dependence of the visddssfy dependence of the unstable INM spectrum can be derived
In strongliquids, Arrhenius behavior is observed from high from the soft-potential model. We relate the distributions of
temperatures where lggy= —4 to the glass temperature. In model parameters to the localization of low-lying modes. For
fragile liquids, Arrhenius temperature dependence is ob-€ach mode, the soft potential defines a barrier height so that
served for low viscosities; 4=<log,,7=2, while the viscos- the collection of unstable modes implies a barrier height dis-
ity varies more strongly than Arrhenius for temperaturestribution. For high temperatures, we find a uniform distribu-
close to the glass temperatufiez T,. tion, while for low temperatures, the distribution is a Gauss-
At the glass temperature, an underlying first-order transiian. Goldstein was first to point out a connection between the
tion is suggested from mode-coupling theories that apply téemperature dependence of the viscosity and the energy land-
moderately viscous fluidgl4]. In these theories, the friction scape in glass-forming liquid24]. Properties of the energy
on a moving particle is ascribed to long-lived density fluc-landscape are reflected in the susceptibility spectrum of lig-
tuations in the liquid, which decay by diffusion. The friction uids. In the normal and moderately supercooled regime, the
increases when the coupling between the particle and thgpectrum has a single absorption peak. In the supercooled
hydrodynamic modes increases, which leads to slower diffuphase, this peak splits into a pair of maxima that correspond
sive decay of density fluctuations. This in turn further en-to slow « and fastB processe¢25]. Fast processes have
hances the coupling, leading to a catastrophe that is identArrhenius temperature dependence and are operative at the
fied with the glass transition. glass temperature. Slow processes have non-Arrhenius tem-
The viscosity is very large at the glass temperature, angerature dependence and are frozen oufat We identify
the system has properties of a solid on laboratory time scalethe low-temperature Zwanzig-Bsler behavior of the diffu-
Stillinger and Weber have identified rigid aperiodic struc-sion constant with a-relaxation process. The high-
tures in computer simulatiof45]. The motion of individual temperature Arrhenius behavior is then identified with
particles in the liquid is arrested, and their structures arg8-relaxation processes. We derive an expression for the dif-
stable to infinitesimal displacements. This requirement is notusion constant in terms of the finite mean-square displace-
sufficient, however, since the solid is a thermodynamicallyment of a particle in the soft potential. It is not surprising that
stable system. Thus, its structures must be stable to finitewe find such a relation, since the INM spectrum is defined by
amplitude thermal fluctuations. In fact, Lindemann showecdhe short-time expansion of the liquid dynamii&$. In short-
that melting occurs when the width of the mean square thettime experiments, such as neutron andsstmauer scattering,
mal displacements of molecules becomes one-tenth of the (glasg transition has been found in measurements of the
interparticle spacind16]. Kirkpatrick and Wolynes have mean-square displacemeiliebye-Waller factor[13].
shown that the stability analysis of aperiodic structures and The outline of this paper is as follows. The soft-potential
mode-coupling theories are equivalent and lead to the sanmodel is introduced in Sec. I, where we focus in particular
kind of transition[17]. on the relation between the localization of soft modes and
It was shown in Ref[15] that groups of atoms create properties of the INM spectrum fdw|—0. The model is
local bistability, and also how they move from one equilib- then used in Sec. Il to derive the unstable frequency spec-
rium position to another along a collective coordinate. Thistrum for low and high temperatures. Parts of this derivation
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have been reported elsewhd@6] but are briefly summa- then followsg(w)=_2wp,(w?/4W)~w. This linear depen-
rized here for completeness. We find a frequency cutoff thatlence of the density of states is consistent with localized
separates contributions to the spectrum from single-well anBehavior of soft modeg34].

double-well potentials. We then derive exponential tempera- In Ref. [35], the additional specific heat of supercooled
ture dependence of the diffusion constant in Sec. IV. In Sediquids is explained by contributions from configurational
V, we find the distribution of barrier heights in the low- and modes. These configurational modes are identified as local
high-temperature limit. Finally, we summarize and discussstress and are described by a linear term in the soft potential,

our results in Sec. VI.
V(X)=W[Dx—D,x>+x*]. 2.3

Il. THE SOFT-POTENTIAL MODEL Because the external field is not included in the definition of

the internal energy of the system, the charfyé follows,

The Debye model for crystal vibrations fails to explain - ’ -
the low-temperature properties of structural glasses. Below %f:g_r;{[\i/oald<x>. Sinced(x)=(d(x)/9D1)dD,, we have by

K, the specific heat and the thermal conductivity have a lin-
ear and quadratic temperature dependence, respectively, i.e.,
Cp(T)=T and K(T)eT? [18,19. Within the tunneling avzwf
model, these universal features of glasses are shown to fol-
low from a d|st_r|but|on of energy differences between theHere, the average is taken with respect to the Boltzmann
two levels that is smooth on the scalelqfT. distribution exp—V(X)/T] (in units such thakg=1)

At higher temperatures, the thermal conductivity reaches B '
a plateau and the specific heat rises faster Tawithin the H(X) W
TLS model for glasses, the thermal conductivity above the — == —[(x®)—(x)?]. (2.5
plateau region is explained by phonons scattering off TLS’s. 9Dy T

T_his mechanism is critically analyzed in Rg27]. Alter_na— . We evaluate the right-hand side for zero restoring force con-
tively, Karpov and Parshin suggested a mechanism in Wh'cgtant D,=0, and find(x2)=0.3380T/W)“2 and (x)=0

anga”?ﬁmﬁ modtes scattter of;the T dLE]' Thf'?hmOdell as- d Equation (2.4) then gives the energy required to generate
cribes the linear temperature dependence of thermal conduge. "« -oc< in the liquid,

tivity above the plateau temperature to a linear decrease o

A(X)

Dl—aDl dD;. (2.9

the scattering rate of these heat-carrying states. In the model W32
of Karpov, Klinger, and Ignatiey29], and otherg30], both V= —0.169_@7D§. (2.6

the tunneling and soft vibrational states are described by soft
anharmonic potentials with locally varying parameters.
Buchenau and co-workers find that the two-level system an

the low-energy vibrational states can be explained by th‘?fhat thermal stress is frozen in the liquid Bf and propose

sarlT:1ert(jh|strrr|T§)urt|onl o\;‘v_l?rcallzer? modgg_z]l.oo mly Raman that the Boltzmann factor exp(®W/T,) gives the distribution
urthermore, low-frequency v¢- cm ) Rama f the linear coefficienD4,
W 32
) o

spectra of glasses have unique features that are attributed %

collective excitations involving 10 to 100 atorp31]. The 3/4

spectra have anharmonic contributions due to relaxation in pl(Dl):O.ZSJ(Wg) exr{—O.lGS(T—

double-well potentials and harmonic contributions from mo- Y

rl?or;s :')’nz S|fngle-\_/vell potegtlallahe _so-c_:alled BOSOT 5e|_}a|4r_1 dsi That is, the coefficient of the linear term of the soft potential
€ '[. l, ast picosecond relaxation in supercooled liquids 'is a Gaussian random variable with variance

explained using soft vibrational modes and their damping.

2y 312 s ivuid i
The soft-potential model assumes modes with an eﬁectivéDl>_3'96(rg/W) B For_tempere_lture§>_Tg, t_he liquid is
massM and a stabilizing fourth-order terfig3] Capable of rearranging its atom|p configurations such that
’ thermal stress vanishes. In the linfif—0, thermal stress

vanishes at any nonzero temperature,

he energy required to generate a small sti2gat D,=0
llows sW= — V. Buchenau and co-workers arg{ig3]

. (27

Vo(X) =W[ — Dpx?+x*]. (2.
p1(D1)=48(Dy), Ty—0. (2.9
Becausex is a reduced coordinatgx]=1, the coefficient _ _ _
D, is dimensionless as well. It follows that the square ofln Ed. (2.7), we neglect configurational rearrangements in
frequency,w?=d?V/dx?, has the dimension of an energy, the liquid, and assume that relaxation in supercooled liquids
[w?]=[W]. The restoring force constant is a random vari-iS caused by particles hopping between potential energy
able characterized by a uniform probability distribution Minima that are frozen in the liquid. Such rearrangements are

(D), important at higher temperatures, and give rise to thermal
stress that depends explicitly on temperature. Stress fields in
02 glass-forming liquids have been investigated in molecular-
p(D,)=pS= const, G<D,<——. (2.2 dynamics simulation$36]. It is found that the stress has
4w long-range order in the supercooled phase, while the normal

fluid cannot support this stress field.
Here, we introduce a high-frequency cutoff for soft vibra- The localization of soft modes is discussed in R8f7].
tional modes(). At zero temperature, the density of statesThe energy to distort a stable structure increases with the
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spatial extent of the instability. This restricts the participating Furthermore, we may calculate the density of states for a
atoms to the close neighborhood of a single atom. A carefutonstant temperatufe and then study two limiting cases by
analysis gives an estimate of up to 100 atoms participating inarying the glass temperatufig,. For T/T;=0(1), we re-

a localized modg23]. This large number of particles may cover the low-temperature limit while fof/Ty—«, the
pose a difficulty in distinguishing between localized and ex-high-temperature limit follows. In the latter cask,=0 and
tended modes in computer simulations. They rarely involvehe linear term of the soft potential vanishes, i.e.,
more than 1000 particles and are thus capable of showing,(D;)=6(D;).

localization of 30 particles. For an extended mode, the Unstable modesw?<0 have imaginary frequencies,
atomic displacements are small, so that the anharmonicity i®=iv. From Eq.(3.2), the density of unstable modes fol-
experienced only via the combined action of all other modeslows:

—+1?

2
lIl. DENSITY OF UNSTABLE MODES 2\ — d*v
G ={ 0 32

>. (3.7
In the absence of thermal strd3$=0, the soft potential

describes symmetric double wellgg(x) =W[ —D,x*+x%].  For a fixed pair of coefficients{;,D>), we first take the
At zero temperature, the density of states contains onlyverage with respect to the coordinate. Since

stable modeg(w)=2wp,(w?/4W) for 0<w<Q. ForD;  d2v/dx2=— »?=W[ — 2D,+ 12x?], the roots are indepen-
#0, the soft potential describes both single and doublejent ofD,,

wells, and the density of states depends on the distributions

of bothD, andD,. At nonzero temperatures, the coordinate . 1
of each soft mode is weighed by the Boltzmann factor X, = i_12 2D, v?/W. (3.9
exd —V(X)/T]. The density of states then follows as

_ 2 It follows that for a fixed frequency, the coefficientD, is

9(w)=20G (0, @D bounded from below,
whereG(w?) is the density of the square of frequencies, 2
d2v DZBDCZm’. (39)
G(w?)=( ¢ W—wz . (3.2

Because the coordinate is weighted by the Boltzmann fac-

Here, the average is taken with respect to the coordirate
and the parameters of the soft potential. At nonzero tempera d2v
<5 -t V2

dx

tor exd —V(X)/T], the average follows as
n _
tures, the density of states contains staklé*0) as well as > :i[ exr{ - Vi, )) +exp( - Vi, )> ]
unstable modes«?<0). The fraction of unstable modes « Ny T T '
increases with increasing temperature. (3.10
A temperature scale enters via the variance of the linear
term of the soft potential D%)=3.96(T,/W)*2 We con- where

sider the supercooled pha;e of the liquid _a_bove the glass V(XE) = WDyx= + Vo(x5). 3.11)
temperature] >T, . Introducing scaled coefficients and co-
ordinates, In Eg. (3.10, the normalization is given by
T3 Nxfffwexq_—y(x)/ﬂdx For D,=0, the potential has two
D1=(Wg> D, (3.3  equivalent minima,
. D3
Tg l/2~ VO(Xr;in) = T, (313
D,= W D,, (3.9

at the coordinates
( T ) 1/4
g —~
Xx=|—| X, (3.5 . /D,
w Xmin— s 7 (3139

The double-well structure is preserved for small values of
V Ty =y D,. Defining Q=—(D,/6)3+(D,/8)?, double and single
T = 7 [DaX=Dax"+x7], (3.60  wells follow for Q<0 andQ>0, respectively. For a double-

well potential, we thus have the inequaliﬂ/§>(27/8)Df.

so that the temperature enters the density of states via th&e recall thatD; is a Gaussian random variable with zero
combinationT,/T only. In particular, the Boltzmann factor mean and Varian063§>=3-96('l'g/VV)3’2. Thus, the soft po-

is independent of the energy scalé. Below we take the tential has double-well structure for sufficiently large restor-
limit W—0 and then consider the limitB—0 andT,—0, ing force ConstantsD§> 13.36(I'g/\/\/)3/2. For a fixed fre-
such that the ratid@/T, is constant. We demonstrate that in quency v, the coefficientD, is bounded from below
this limit, the density of states is uniquely defined. D,>v2/2W; cf. Eq. (3.9. We conclude that for large fre-

the ratioV/T follows,
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guenciespy>v., the density of unstable states is dominated For a large restoring force constant, the linear term of the
by contributions from double wells, while for small frequen- soft potential is a small perturbation. In quadratic order in
cies, v<wvg, it is dominated by contributions from single D, the coordinates of the potential minima are given by
wells. This frequency cutoff, depends on the product of the Xpn=*vD,/2—D1/4D,+ (3/16)\/D2/2D§/Dj. The poten-

glass temperaturgéy and the energy sca, tial  minima then follow as Vy,=W—D34
va *+DyDy/2— D"{/8D2]. For a double-well potential, we have
ve=2.18T W)™ (3.14  DZ/4>D2/8D,, and the quadratic correction of the potential

o _ o can be neglected. It follows that the Boltzmann distribution
In the limit T,— 0, the cutoff is arbitrarily smally.—0, and  is a superposition of two Gaussians, and the normalization is
all unstable modes originate from double-well potentials. given by

N.— [ T ox _VO(Xr:;]in) ox _WD1X+
N 2wbD, T T mn

whereVo(Xmin) = Vo(Xmin) =Vo(Xmin)-
We choose as a reference point the inflection point of the symmetric double$vg{x)/dx*=0,

/D2
XOZ F, (316}

=P
+ex _?Xmin ) (3.19

and find for nonzero frequencieg€+0,

v -, 2WD, 1 W|D,|
etV = p —$[V0(Xo)—Vo(Xmin)]—T[Xmin—xo]>

1 WD,
Xex[{ - ?[VO(X,,)—VO(XO)]— T[Xo_xv]> ) (3.17

wherex, =X = —X, andXyin=Xnmin=Xnin- The density of states of unstable modes now follows by taking the Writ0 and

then considering the average with respect to the parameters of the soft potential; cf. the discussion follosr). Eq.
Because the potentigly(x) vanishes a¥/— 0, the argument of the exponential function on the RHS is small in this limit.

We first take the average with respect to the uniform distributioD pfnd truncate the cumulant expansion at the first term,

d?v [2wW(D 1 W|D
< ) W + V2 >X 5 = ’71<'T 2> ex‘{ - f([VO(XO)_VO(Xmin)]>D2_%quin_xo]z)g;)
P2
1 W|D
XeXF{ —7{[Vo(x,) = Vo(x0) o, ~ #([Xo_xu]alﬁ) : (3.18

Here, we replaced[ Xmin—Xol)p, and ([Xo—X,1)p, by ([xmin—xo]z)%,’z2 and([xo—xy]z)é’i, respectively. We recall from Eq.
(3.9 that for a fixed frequencyr, the restoring constant is bounded from belo,=v?/2W. We readily find
(D,)=[Q?/8W+ v?/4AW]. Equations(3.8) and (3.16 then give (x3+x2)=Q2/24W and (x,x,)=(12W) */Q*16— v¥/4
=(0?/48W— v*24WQ? for »>—0. It follows that

v Q 1 04 1 WY2Qip,| 1 Q%% 1 wY22?D,|
Nae*” || =Naz7T &~ gmwt T wawr g ot | 819
3710 12
The quantityG,(0) now follows by settingg=0 and taking the average with respecttg. We have
<5 d2v > [ 02 p( 1 04 1 w¥2p,| (3.20
—-— =\/——=6eXp — s ———— |- .
dx D, 4nT 432WT  3./10 T
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Since(D?%)=3.96(T,/W)*?, the variance oD diverges as
W—0. For a fixed energy scal&V, the combination
WY20)|D,|/3/10T becomes large in the limitD,|—oo.
Similarly, the average (exp(\lvl’zmDl|/3\/1—0T)>D1
is determined by the behavior
density p,;(D,;) for large values of D;. For
W>0, we replace (exp(~W2|D4|/3V10T))p by

1/ expW22|D4|/3/10T))p, and then consider the limit

of the probability
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cf. Eq.(3.22, and find

M,\. ,{_____ 9 (3.29
G0 M 1T “sam) @
We observe that the temperature-dependent density of un-
stable modes is characterized by the glass temperaiyre
and the upper frequency cutdff.

The density of states is given gy (v)=2vG,(v?); cf.

W—0 such that the variance of the scaled Gaussian randog. (3.1). The high-temperature limit is obtained by setting

variableD;=W®“D, is finite, (D;?)<. A Gaussian inte-
gration gives (expW!2Q|D4|/3/10T))p = exp(Ty 0%
20WY2T2). We then have

(0 [ Q2 1 0% 1T 02
(0= V777 & ~ 12wt 20w/

(3.21
We introduce a dimensionless frequency and temperature,
O'= ° (3.22
N '
T = T 3.2
and find
\/ﬁf 1 0% 1T15%0?
CulO=Vz7®" " 23T 20 72 )
(3.29

T4=0; cf. the discussion following E¢3.6). We recover the
Arrhenius temperature dependence of the unstable density
for liquids in the normal phase that has been proposed by
Vijayadamodar and Nitzafl0],

2G.(0 1 022
gu(V)_ U( )Vex _m? L] T>Tg-

(3.30

For lower temperaturesf=T,, we recover the Zwanzig-
Bassler temperature dependence of the unstable density for
liquids in the supercooled phase that has first been proposed
by Keyes[9],

T3/2V4
9u()=2G,(0) v exp( -3 #) , T=T,. (3.3)

Equations(3.30 and(3.31) together with the frequency cut-
off v,=2.18T.*[cf. Eq.(3.14], are the central results of this
section. Below we discuss implications of the frequency and
temperature dependence of the unstable INM spectrum to
dynamic properties of the liquid.

where we replaced primed quantities by unprimed ones to

simplify the notation.

IV. DIFFUSION CONSTANT

We estimate the relative magnitude of the two terms in

the argument of the exponential function by setting T, .
We have G,(0,T=Ty)=Q%4xTexp(-Q0%432T,
—Q?/20T%. The first term dominates fof)>4.64T;".
Sincev,.=2.18T¢* [cf. Eq.(3.14], we have for all tempera-
turesT>Ty,

1 04

G,(0 0 o 3.2
WO=NZm7 &R ~ a3 7 v~z G2

That is,G(0) is independent of the glass temperatlige

We calculateG,(»?) in a similar fashion. We insert Eq.

(3.25 into Eq.(3.19,

Gy(v?) exp(— Q21?1 14ANT) (3.26
Gu(0)  (expW 2?|D,|/\120T))p - '
A Gaussian integration gives
Gy(¥?) 1 0%2 1 T4
G,(0) 144 WT 8 WQZ2T
We introduce a dimensionless frequency,
Y= (3.29
Jw

Instantaneous normal modes are defined via ghert-
time expansion of the equations of motion of individual par-
ticles in liquids, and solidlike aspects of liquid dynamics are
emphasized. Nevertheless, Keyes and co-workers have dem-
onstrated the usefulness of INM analysis to desclirey-
time dynamical properties of cold liquid€]. More recently,
collective modes were used in R¢B8] to describe self-
diffusion in hot liquids above the melting point. The self-
diffusion coefficient is approximated by the ratio of the time
spent in a valleyr, to the time spent in crossing a barrier
7,,D=TY27 /7, . For liquid dynamics on short time scales,
unstable modes are the signature of barrier crossings. The
fraction of unstable modes is given bBy=/g,(v)dv [6].
Using transition rate theory, Keyes estimates that short-time
and long-time properties are related to each othgV,r,
of,/(1—1,) [9]. Several other approximations suggest that
any strongT dependence oD follows from the relation,
D(T)~fu(T).

Unstable modes originate from both double and single
wells. Because patrticle transport follows from hopping pro-
cesses, unstable modes from single wells should not contrib-
ute to the self-diffusion constant. For frequenciesv,, all
unstable modes originate from double wells, whereas for
v<v., as we just have seen, the density of unstable modes
has large contributions from single wells. It follows that
INM theories of the diffusion constant should employ modes
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with v> v, only; wheref,, appeared in earlier work, it should From Eg. (4.5, we have Tc/Tg:72Tg/Q4. Since
be replaced b)f(l=ffcg(v)dv. Because the density of states (Ea/Eﬁ)2’3= 102Tg/Q4, we find

of unstable modes has exponential frequency dependence, a

K . . . T E 2/3
nonzero cutoff gives a fraction that is exponentially small, lo 7(_a> 4.9
fi,~09u(vc)<1. It then follows that the diffusion constant is Ty \Eg/ '
exponentially small as well,
At the crossover temperature, the diffusion constant follows,
D~g(v.). 4.1

In dimensionless units, the cutoff frequency depends only D(TC)NeX,{ —0.4 %) ) (4.9

on the glass temperature; cf. E§.14), Ea

ve=2.18T3". (4.2 Thus, the crossover between Arrhenius and ZwanZigsBa
. . _ behavior depends only on the rafig,/E;. ForE,>Eg;, we
Inserting Eqs(4.1) and(4.2) into Eq.(3.30, we find Arrhen-  have T,>T, and Zwanzig-Basler temperature dependence

ius behaviof 11] for high temperatures, follows for some nonzero temperature range abye For
2112 Ez>E,, on the other hand, the diffusion constant is arbi-
D~exp< _iQ Ty ) T>T 4.3 trarily small at T=T,., and Arrhenius temperature depen-

36 T /'’ 9° ' dence follows for all temperatures abovig,. That is,

. _ E.>Eg; applies to fragile liquids, whereds;>E, applies

For lower temperatures, Zwanzig-&sder behaviof12] fol-  to strong liquidg13].
lows from Eq.(3.3D, Stillinger relates various static and dynamic properties of
glass-forming liquids to the multidimensional complex to-
pography of the collective potential energy functi3g].
The topography of strong liquids is uniformly rough, and
only B-relaxation processes are relevant. In fragile liquids,
Equations(4.3) and (4.4) give the crossover temperature individual local minima(“basins”) are organized in deeper
Te, Q2T36T,=2T7410%TZ, or potential energy well§ craters™). It is only at high tempera-
tures that particles explore regions of the configuration space
with uniformly rough topography, while at lower tempera-
tures, particles surmount larger and wider potential energy
barriers. This transition gives rise to the bifurcation of the
At the crossover temperature, the diffusion constantemperature dependence of the peak relaxation frequency in
D.=D(T,) is given byDc~exp(—Qel2592Tg/2). liquids. In the equilibrium liquid range, the single absorption

We readily express the crossover behavior of the diffusiormaximum peak has Arrhenius temperature dependence. This
constant in terms of characteristic energy scales of the sofiingle maximum splits into a pair of maxima in the super-
potential. We have found non-Arrhenius temperature depergooled regime. The peak corresponding to fadt'second-
dence in the case when the linear term of the soft potential igry”) relaxation has Arrhenius behavior and persists even in
large compared to the quadratic term. Settingthe glassy phase. The peak originating from slew"pri-
WD, x=WD,x? we find that the linear term is larger than mary”) relaxation has non-Arrhenius behavior and is frozen
the quadratic term for small displacemertsx., while the ~ out at the glass temperature. The connection with the present
quadratic term is larger for>x.. Here,x,=D;/D, and the ~ work is made by identifyindz,, andE ; with a lower limit of
crossover energy follows a§C=WDf/D2. We replaceDi energy barriers of craters and the characteristic energy of

by its averagg/D?) and set the restoring force equal to its Pasins, respectively.

5/2
D~exp( - 2#) , T=T,. (4.4)

2

Tg
Te=7257%- (4.5

maximum value; cf. Eqs2.2). This gives a lower bound for !N fact, a more explicit connection can be made between

energies characterizing thermal stress in the liquid, high-temperature behavior and fast dynamic processes in li-
uids. In the high-temperature limit, the soft potential de-

T3/2 scribes symmetric double wells. On short time scales, the

Eazl%. (4.6)  particles perform harmonic oscillations around the potential

minima. The mean square displacemébSD) of a har-

. - - . 2 _ 2 .
In the absence of thermal stre&, =0, the soft potential is MOnic oscillator is given by(x),=T/«". Replacing the
given byV,(x) =W[ — D,x?+x*]. The barrier height of the square of the frequency by the upper cutoff for the restoring

symmetric double well follows asxvo:WD§/4. Setting force cc_)nsl_tan_t(,j we find the MSD characterizing fast pro-
D,=02%/4W, we find the characteristic energy associated"€S5€s In flquids,
with soft vibrational modes in the liquid, aT
Q4 (A p=q2- (4.10
The linear term of the soft potential describes stress that is

In Egs.(4.6) and(4.7), we introduce dimensionless energies, frozen in the liquid at the glass temperature. For zero restor-
E/W—E; cf. Eq.(3.23. ing force constant,D,=0, the MSD is given by
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(x?)=0.338TY2% cf. the discussion following Eq2.5). Set- 1 (= _ .
ting T=T,, we find the static contribution to the MSD, P(E;v)= EL doexp(igE)(exp(—iqAVo))p,, T>Tg.

(5.4
(X?)static=0.338T 3. (41D For W—0, we replace (exp(~igAVp)p, by

We use Egs.(4.10 and (4.11) to rewrite the high- exp(—iaAVo)p,) [cf. Eq.(3.18],
temperature limit of the diffusion constant, 1 (e
1 () P(E;v)zﬂf daexp(iq[E—(AVp)p, D), T>Ty.
static —®

D~exp(—§ o, ) T>T,. (4.12 (5.5
. . Since
Buchenau and Zorn report neutron time-of-flight measure-
ments of atomic displacements for frequencies above Vo(X,) = Vo(Xmin) =[ Vo(X,) — Vo(Xo) ]
10'°Hz in glassy, liquid, and crystalline seleniyd0]. They
observe a weak temperature dependence of the mean square +[Vo(Xo) = Vo(Xmin) ]

displacement in the ordered phase and a strong temperatur, iherex, is the inflection point ofVo(x) [cf. Eq. (3.16]),

c_Jependent_enhancement in the Qisordered p_hase._ They fin readily find(AV,)p. =022/ 144N+ Q4 432W. We in-
linear relation between the logarithm of the viscosity and the 2

inverse of the enhancement of the MSD. Since the viscosityy©duce a dimensionless energy

is proportional to the inverse of the diffusion constant, this E
relation is in agreement with our prediction; cf. E4.12. E' =W’ (5.6
V. DISTRIBUTION OF BARRIER HEIGHTS along with the dimensionless frequenci@s$=Q/\yW and

v =vl\W; cf. Egs. (3.22 and (3.28. We find

Followi [ i f the diffusi h
ollowing our discussion of the diffusion constant, t e@(E;v)z(llZw)ffw dq exp(—ig[E— 022144 04/432))

density of states of unstable modes reflects the topography ) o, .
the potential energy landscape of liquids. The landscape cor‘f‘-’he_re we re_:placed pnme_d quantltlgs by unprlmzed Zones. The
sists of local minima separated by potential barriers, and i§ _Integration —now yields P(Ejv)=5(E—»707/144

thus characterized by the distribution of barrier heights. In_ ¢} /432). The characteristic energy for fast processes in

the soft-potential model, we define a barrier height for eaci€ liquid is given ,byEﬁ:,QL_l/G“_; cf. Eq.(4.7). We finally
pair of parametersk;,D,). We have find the barrier height distribution in the high-temperature
e limit,
AV:V(XV)_V(Xmin)! (51)
E:v)=6E 4E 1\/E_2 T>T
wherex, and X, are given by the roots?V/dx?+ »2=0 P(Ev)=0| BE=57Bs—1gVBs»" ), T>Tg (57
and dV/dx=0, respectively; cf. Eqs(3.8) and (3.13. The

distribution of barrier heights is then defined as Thus, fast processes in the liquid are associated with a po-

tential energy landscape that is uniformly rough.
P(E;v)=(S(E=AV))p, b, (5.2 For lower temperatures, the leading frequency depen-
dence of the potential differenceV originates from the lin-
Here, P(E;v) depends on the frequenaythrough the de- ear term of the soft potential,
endence on the coordinate. We calculate the average on
tphe right-hand side by inser%ing the Fourier representgtion of AV=[Vo(Xo) = Vo(Xmin) ]~ WID1|[Xo =X, ] TZTQ('5 8
the & function, 8(x)=(1/27)f” . dgexpligx). We inter- '
change the order of taking the average with respect to thé&he distribution of barrier heights now follows by taking the

parameters of the soft potential and integration, average with respect to both parameters of the soft potential
[cf. Eq.(5.3)],
1 (= . .
PE = 5| daexpioE)(ex—iaav)o, o, P(Ei)=(1/2m)]".dq
(5.3 xexp(igE)(exp —iq[Vo(Xo) = Vo(Xmin)]
The discussion of the preceding section suggests that bar- + qu|Dl|[XO_Xu])>D1,D2-

rier heights have different distributions in the high- and low-
temperature limits. Folf>T,, we can neglect the linear For W—0, we proceed by first taking the average with re-
term of the soft potential/(x) =V (x) =W[ — D,x?+ x*], spect to the restoring force constdpy,

1 0
P(Eiv)= 5 f_mdqexmq{E—<[vo(x0>—vo<xmm>1>D2}><exrxqu|Dll<[x0—xv]2>é’§>>ol, T=T,. (59

Using ([xo—X,]%)p,= »*/12WQ?, we find



55 ANHARMONIC POTENTIALS IN SUPERCOOLED ... 6925

1 ©
P(E;v)=Eﬁmdqexp(iq[E—Q“/432\N])(exqu1’2v2|D1|/\/1_ZQ)>D1, T=T,. (5.10

The parameteD, is a Gaussian random variable with variarziﬁbzl>=3.96('l'g/\/\/)3’2. In particular, the variance diverges as
W—0, and we cannot use a cumulant expansion to calculate the average with redpgctftahe discussion preceding Eq.
(3.21). Rather, a Gaussian integration giexp(~iqW"2?D,|/\120))p = exp(~?Ty *v*/8W"202). We then have

1 (e T312,4
P(E;v)=ZJ'_‘ dagexp(iq[ E— Q%/432W])ex _ngl?ﬁf‘f)' T=T,. (5.19)

It follows that P(E; ») = (V2WY*Q/ 7 T3 *v?) exp(- 2WH20 Y E— Q414 TI?%).
As above, we introduce a dimensionless endEgy: E/W and frequencies’ = v/\W and Q' =Q/\W. In Eq. (4.6), we
have found the characteristic energy for slow processes in the ligyid, 16T S’Z/QZ. We obtain

32

1
exp —
J7E 432 p( Eav

P(E;v)=

4 2
4[E—2—7EB} ) T=T,. (5.12

Thus, slow processes in the liquid are associated with a rugial frequency and temperature dependence that were previ-
ged potential energy landscape characterized by a Gaussiansly found in computer simulations. We further found a
distribution of barrier heights. lower (imaginary frequency cutoff separating contributions
The two limiting barrier height distributions are in agree- from single- and double-well potentials to the unstable den-
ment with the temperature dependence of the diffusion consjty of states. Using approximate formulas relating the frac-
stant. High-temperature Arrhenius behavior implies a singlgjon of unstable modes to the diffusion constant, we found
potential energy barrier for viscous flow in the liquid, while arrhenjus temperature dependence of the diffusion constant
low-temperature Zwanzig-Baler behavior of diffusion is jth a crossover to Zwanzig-Baler dependence for tem-
characteristic for random energy modpi]. peratures close t@,. These two temperature regimes are
known to correspond to landscapes with uniform and Gauss-
ian barrier height distributions, respectively. The barrier
height of a single mode is defined from the soft potential. We
The solidlike approach to liquid dynamics has been re-derived the above energy distributions in the appropriate lim-
vived in recent years largely by computer simulations. In-its. For a variety of system&lass transitions have been
stantaneous normal modes are obtained by diagonalizing thdentified in experiments probing the short-time dynamics.
dynamic matrix for a representative configuration that has8uchenau and Zorn have proposed a linear relation between
been selected from a molecular-dynamics simulation. Théhe viscosity and the inverse of the mean-square displace-
INM spectrum is obtained from a snapshot of the liquid andment of the system’s particles for high frequencies. We re-
describes the dynamics at short times. Nevertheless, followcovered this relation from our expression for the high-
ing Zwanzig's normal mode description of self-diffusion in temperature limit of the diffusion constant, and thus
liquids, the INM spectrum has been used to describe liquiddentified the high-temperature limit with fagt-relaxation
dynamics on long time scales as well. This paper is a steprocesses and the low-temperature limit with slow
towards a clearer understanding of the relation between prope-relaxation processes.
erties of the INM spectrum and those governing the time Analytical theories for the entire INM spectrum that have
evolution of the liquid on long time scales. In supercooledpreviously been proposed are based on the connection be-
liguids, the viscosity varies over more than 10 decadestween the Laplace transform of the return probability of a
Goldstein, and later Stillinger, showed that exponential temfandom walker and the phonon density of states in disor-
perature dependence of viscous flow can be understood frogered system42]. Wu and Loring generalize this approach
a topographic viewpoint of the potential energy landscape iio higher dimensions, in which case atomic motions along
liguids. In this paper, we have shown that exponential fred orthogonal directions are couple@3]. They use
qguency and temperature dependence of the unstable lobe efnfiguration-averaged transport properties of a random
the INM spectrum is consistent with the inherent structurewalker to calculate the frequency spectridd]. Using a
approach to liquid dynamics. two-body approximation to the self-energy, they derive ana-
We started by first establishing the relation between thdytical expressions for the density of states that are in good
localized nature of low-lying vibrational modes and their de-agreement with results from computer simulations of
scription with the soft-potential model. We assumed that detennard-Jones systems. The Green’s-function approach to
fects are frozen in at the glass temperature, giving rise tdNM spectra is further elaborated on in a paper by Wan and
stress in liquids. These properties define the model fronBtratt[45]. Starting from expressions for the Green'’s func-
which we then calculated the density of unstable modes. Ition derived from the replica method, they use a diagram-
the high- and low-temperature limit, we recovered exponenmatic formulation to incorporate many-body effects in their

VI. SUMMARY AND DISCUSSION
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theory. This refined theory gives a better representation adlgebraic sum of the high- and low-temperature limitsf.

the unstable lobe of the INM spectrum. In an earlier versiorEgs.(3.30 and(3.31)], gives an excellent fit to the unstable

of this theory[46], the distribution of the eigenvalues of the density for a broad temperature range<01B<20 (whereT
dynamic matrix follows the “semicircle law.” Such a distri- is in reduced Lennard-Jones upit$his form of the unstable
bution is familiar from the theory of random matricg#7], density suggests that thermal stress varies in space, and the
and has recently been derived by Zwanzig for a highly conconfiguration space of the system consists of regions whose
nected random master equatipd8]. The theories of Refs. topographies are characterized by uniform and Gaussian dis-
[43] and[45] do not give simple analytic expressions for the tributions of barrier heights. It is shown in R¢&1] that the
frequency dependence of the stable and unstable lobe of ttrimber of particles in correlated regions can be estimated
INM spectrum, so that a comparison with the present theoryrom an analysis of the eigenvectors of the dynamic matrix.
cannot readily be made. This would be highly desirable howThus, instantaneous normal modes examine the energy land-
ever, since the analytic expressions derived here have adcape as well as spatial correlations in the liquid. Such spa-
lowed us to associate unstable instantaneous normal modgal heterogeneity has recently been used to explain enhanced
with fast and slow dynamic processes in the liquid. The comiranslational diffusion of large probe molecules in a super-
plexity of the Green’s function formalism reflects the fact cooled liquid @-terphenyl [52,53. Spatial heterogeneity, in
that the phononlike coordinates used in the random-walk apaddition to dynamic heterogeneity, plays a major role in

proach do not easily describe modes localized in cooperativiheories of the glass transitid®4—57, and has been pro-

rearrangement regions of finite sig9.

posed as a possible mechanism for nonexponential relaxation

In this paper, we considered the unstable density of statda supercooled liquid§58].

only for the limiting cases of low =T, and high tempera-

tures, T>T,. For intermediate temperatures, MD simula-
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