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Anharmonic potentials in supercooled liquids: The soft-potential model

U. Zürcher* and T. Keyes†

Department of Chemistry, Boston University, Boston, Massachusetts 02215
~Received 23 October 1996!

Instantaneous normal modes~INM ! are the harmonic approximation to liquid dynamics. This is an extension
of the phonon description of lattice dynamics, in which case Bloch’s theorem shows that all modes are
extended. Long-range order is destroyed in liquids and glasses, and the INM spectrum has contributions from
both extended and localized modes. We use the soft-potential mode to describe localized modes. This model is
a high-temperature extension of the standard two-level-system model for glasses. The equilibrium position of
any atom in the liquid has only temporary character, and relaxation processes in the liquid are associated with
particles hopping over potential energy barriers. Barrier tops have negative curvature so that an INM spectrum
has an imaginary frequency~unstable! lobe in addition to the conventional stable mode contributions; con-
versely the unstable modes carry information about diffusion. We derive analytic expressions for the frequency
and temperature dependence of the unstable lobe that are in agreement with results from computer simulations.
Self-diffusion of particles in the liquid is governed by the fraction of unstable modes originating from double-
well potentials. For the diffusion constant, we find a crossover behavior from Arrhenius temperature depen-
dence to Zwanzig-Ba¨ssler dependence. We find an explicit expression for the distribution of barrier heights. In
agreement with Stillinger’s inherent structure approach to glass-forming liquids, this distribution is uniform, or
Gaussian, for high and low temperatures, respectively.@S1063-651X~97!03706-9#

PACS number~s!: 47.10.1g, 63.50.1x, 64.70.Pf
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I. INTRODUCTION

Unlike liquids, solids are capable of elastic resistance
shear stress. It is this property that explains therigidity of
solids and thefluidity of liquids. The rigidity of solids is in
agreement with the concept that atoms in a solid oscil
around mechanical equilibrium configurations. Neverthele
Maxwell suggested that despite the characteristic fluidity
liquids, atoms in a liquid vibrate around equilibrium pos
tions @1#. In order to reconcile this apparent contradictio
Frenkel pointed out that for any atom in a liquid, its equili
rium position is not permanent but rather has tempor
character@2#. Each atom performs oscillations about an eq
librium position during a certain timetM ~‘‘Maxwell time’’ !,
until the atom jumps to a new equilibrium position at som
distance, which is of the same order of magnitude as
mean distance between adjacent atoms. In this new posi
the atom is surrounded, partially at least, by new neighb

Zwanzig evokes a similar picture of liquid dynamics
his derivation of the relation between self-diffusion and v
cosity of liquids~Stokes-Einstein relation! @3#. Local minima
of the potential energy surface of a many-body system div
the configuration space of the system into smaller ‘‘cells
Most of these cells are expected to correspond to amorph
configurations, while others correspond to crystalline~or
slightly disordered! configurations. The atoms perform a
proximate harmonic oscillations around their respect
equilibrium positions until the liquid finds a saddle point o
the potential energy surface and jumps to another cell. Zw
zig assumes that these harmonic oscillations are describe
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a Debye spectrum, characterized by longitudinal and tra
verse sound velocities. Jumps between different cells
characterized by a waiting time distribution, approximat
by a single exponential function. The diffusion constant th
follows from a Green-Kubo formula and obeys a Stoke
Einstein law. However, as noted already by Zwanzig, t
argument does not give an independent estimate for the
of jumps between cells.

This solidlike approach to liquid dynamics has gained
newed attention in recent years primarily from molecul
dynamics simulations@4,5#. Expanding the total potential en
ergy around some arbitrary configuration, the second te
defines the dynamic matrix. The eigenmodes of the liq
~‘‘instantaneous normal modes,’’ INM! are then defined by
diagonalizing the dynamic matrix. Unlike the spectrum o
solid, the INM spectrum consists of both stable (v2.0) and
unstable (v2,0) eigenfrequencies. Unstable modes lead
an exponential time dependence and may be identified w
barrier crossings between two equilibrium configurations
the liquid. In fact, a relation has been proposed between
fraction of unstable modesf u5*0

`ru(n)dn and the self-
diffusion constant,D;T1/2f u /(12 f u) @4,6#. Here,ru(n) is
the density of unstable modes andv5 in.

Diagonalization of the dynamic matrix yields three ze
modes corresponding to rigid translations in three perp
dicular directions. The remaining modes give the INM spe
trum that shows a linear behavior aroundv50, r(v);uvu
~using the standard convention that the imaginary lobe
plotted along the negative frequency axis!. For a system of
500 soft spheres, it was shown that the unstable part of
INM spectrum contains both extended and localized mo
@7#. Such localization is a consequence of structural disor
in the system and has previously been found for the sa
system of soft spheres at zero temperature@8#. For unstable
modes, the potential energy profile along eigendirection
6917 © 1997 The American Physical Society
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6918 55U. ZÜRCHER AND T. KEYES
analyzed in Ref.@7#. It was found that modes withn,nc
correspond to saddle points in single-well potentials, wh
modes withn.nc correspond to the system being near t
top of double-well barriers.

The fraction of unstable modes increases with increas
temperature. The temperature and frequency dependen
the unstable INM spectrum was analyzed by Keyes for
uids in the supercooled phase@9# and by Vijayadamodar and
Nitzan for liquids in the normal phase@10#. In the normal
phase, the density followsru(n)5Anexp(2Bn2/T), while
the temperature dependence is stronger in the superco
phase,ru(n)5Anexp(2Cn4/T2). Here, units are such tha
kB51, A is a temperature-dependent prefactor, andB and
C are constants. Because unstable modes withn,nc do not
contribute to transport in the liquid@7#, the diffusion constant
is proportional to the fraction of unstable modes with fr
quenciesn.nc , i.e.,D} f u85*nc

` ru(n)dn. In turn, this rela-

tion suggests an exponential temperature dependence o
viscosity,h;1/D. We have Arrhenius temperature depe
dence in the normal phase, lnh ;const/T @11#, and Zwanzig-
Bässler temperature dependence in the supercooled ph
lnh ;const/T2 @12#.

The glass temperature is arbitrarily defined as the te
perature at which log10h513 ~with @h#5 poise). Angell
proposed a classification of glass-forming liquids that
based on the temperature dependence of the viscosity@13#.
In strong liquids, Arrhenius behavior is observed from hig
temperatures where log10h524 to the glass temperature. I
fragile liquids, Arrhenius temperature dependence is
served for low viscosities,24& log10h&2, while the viscos-
ity varies more strongly than Arrhenius for temperatu
close to the glass temperature,T*Tg.

At the glass temperature, an underlying first-order tran
tion is suggested from mode-coupling theories that apply
moderately viscous fluids@14#. In these theories, the friction
on a moving particle is ascribed to long-lived density flu
tuations in the liquid, which decay by diffusion. The frictio
increases when the coupling between the particle and
hydrodynamic modes increases, which leads to slower di
sive decay of density fluctuations. This in turn further e
hances the coupling, leading to a catastrophe that is ide
fied with the glass transition.

The viscosity is very large at the glass temperature,
the system has properties of a solid on laboratory time sca
Stillinger and Weber have identified rigid aperiodic stru
tures in computer simulations@15#. The motion of individual
particles in the liquid is arrested, and their structures
stable to infinitesimal displacements. This requirement is
sufficient, however, since the solid is a thermodynamica
stable system. Thus, its structures must be stable to fin
amplitude thermal fluctuations. In fact, Lindemann show
that melting occurs when the width of the mean square th
mal displacements of molecules becomes one-tenth of
interparticle spacing@16#. Kirkpatrick and Wolynes have
shown that the stability analysis of aperiodic structures
mode-coupling theories are equivalent and lead to the s
kind of transition@17#.

It was shown in Ref.@15# that groups of atoms creat
local bistability, and also how they move from one equili
rium position to another along a collective coordinate. T
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finding gives a microscopic basis for the ‘‘two-leve
system’’ model~TLS! describing low-temperature therma
and kinetic properties of amorphous solids@18,19#. For
Lennard-Jones systems, localized modes were identifie
computer simulations and their relation to TLS was d
cussed@20#. A quantitative method was developed for fin
ing TLS’s in computer simulations, and a universal theory
low-temperature properties of structural glasses was p
posed in Ref.@21#. Glassy anomalies between 1 and 10
have been attributed to additional states coexisting w
sound waves. In neutron-scattering experiments, these a
tional modes have been shown to be soft harmonic vibrati
with a crossover to anharmonicity at the low frequency e
@22#. The soft-potential model describes both the tunnel
and the soft vibrational modes in a glass@23#, via the addi-
tion of two parameters to the standard tunneling model. O
parameter is the frequency of the lowest maximum in
vibrational density of the states and is directly accessible
experiment. The second parameter is the product of the
fective mass and the square of the atomic displacemen
which the anharmonic part of the potential is dominant. T
second parameter thus describes vibrational localization
anharmonicity in the glass. The number of particles part
pating in a localized mode has been estimated to be 10–
@23#.

In this paper, we show that the frequency and tempera
dependence of the unstable INM spectrum can be der
from the soft-potential model. We relate the distributions
model parameters to the localization of low-lying modes. F
each mode, the soft potential defines a barrier height so
the collection of unstable modes implies a barrier height d
tribution. For high temperatures, we find a uniform distrib
tion, while for low temperatures, the distribution is a Gau
ian. Goldstein was first to point out a connection between
temperature dependence of the viscosity and the energy l
scape in glass-forming liquids@24#. Properties of the energy
landscape are reflected in the susceptibility spectrum of
uids. In the normal and moderately supercooled regime,
spectrum has a single absorption peak. In the superco
phase, this peak splits into a pair of maxima that corresp
to slow a and fastb processes@25#. Fast processes hav
Arrhenius temperature dependence and are operative a
glass temperature. Slow processes have non-Arrhenius
perature dependence and are frozen out atTg . We identify
the low-temperature Zwanzig-Ba¨ssler behavior of the diffu-
sion constant with a-relaxation process. The high
temperature Arrhenius behavior is then identified w
b-relaxation processes. We derive an expression for the
fusion constant in terms of the finite mean-square displa
ment of a particle in the soft potential. It is not surprising th
we find such a relation, since the INM spectrum is defined
the short-time expansion of the liquid dynamics@5#. In short-
time experiments, such as neutron and Mo¨ssbauer scattering
a ~glass! transition has been found in measurements of
mean-square displacement~Debye-Waller factor! @13#.

The outline of this paper is as follows. The soft-potent
model is introduced in Sec. II, where we focus in particu
on the relation between the localization of soft modes a
properties of the INM spectrum foruvu→0. The model is
then used in Sec. III to derive the unstable frequency sp
trum for low and high temperatures. Parts of this derivat
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55 6919ANHARMONIC POTENTIALS IN SUPERCOOLED . . .
have been reported elsewhere@26# but are briefly summa-
rized here for completeness. We find a frequency cutoff t
separates contributions to the spectrum from single-well
double-well potentials. We then derive exponential tempe
ture dependence of the diffusion constant in Sec. IV. In S
V, we find the distribution of barrier heights in the low- an
high-temperature limit. Finally, we summarize and discu
our results in Sec. VI.

II. THE SOFT-POTENTIAL MODEL

The Debye model for crystal vibrations fails to expla
the low-temperature properties of structural glasses. Belo
K, the specific heat and the thermal conductivity have a
ear and quadratic temperature dependence, respectively
Cp(T)}T and K(T)}T2 @18,19#. Within the tunneling
model, these universal features of glasses are shown to
low from a distribution of energy differences between t
two levels that is smooth on the scale ofkBT.

At higher temperatures, the thermal conductivity reac
a plateau and the specific heat rises faster thanT3. Within the
TLS model for glasses, the thermal conductivity above
plateau region is explained by phonons scattering off TLS
This mechanism is critically analyzed in Ref.@27#. Alterna-
tively, Karpov and Parshin suggested a mechanism in wh
anharmonic modes scatter off the TLS@28#. This model as-
cribes the linear temperature dependence of thermal con
tivity above the plateau temperature to a linear decreas
the scattering rate of these heat-carrying states. In the m
of Karpov, Klinger, and Ignatiev@29#, and others@30#, both
the tunneling and soft vibrational states are described by
anharmonic potentials with locally varying paramete
Buchenau and co-workers find that the two-level system
the low-energy vibrational states can be explained by
same distribution of localized modes@22#.

Furthermore, low-frequency (n;12100 cm21) Raman
spectra of glasses have unique features that are attribut
collective excitations involving 10 to 100 atoms@31#. The
spectra have anharmonic contributions due to relaxation
double-well potentials and harmonic contributions from m
tions in single-well potentials~the so-called Boson peak!. In
Ref. @32#, fast picosecond relaxation in supercooled liquids
explained using soft vibrational modes and their damping

The soft-potential model assumes modes with an effec
massM and a stabilizing fourth-order term@33#,

V0~x!5W@2D2x
21x4#. ~2.1!

Becausex is a reduced coordinate,@x#51, the coefficient
D2 is dimensionless as well. It follows that the square
frequency,v25d2V/dx2, has the dimension of an energ
@v2#5@W#. The restoring force constant is a random va
able characterized by a uniform probability distributio
p2(D2),

p2~D2!5p2
05 const, 0,D2,

V2

4W
. ~2.2!

Here, we introduce a high-frequency cutoff for soft vibr
tional modesV. At zero temperature, the density of stat
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then followsg(v)52vp2(v
2/4W);v. This linear depen-

dence of the density of states is consistent with localiz
behavior of soft modes@34#.

In Ref. @35#, the additional specific heat of supercoole
liquids is explained by contributions from configuration
modes. These configurational modes are identified as l
stress and are described by a linear term in the soft poten

V~x!5W@D1x2D2x
21x4#. ~2.3!

Because the external field is not included in the definition
the internal energy of the system, the changedV follows,
ddV5WD1d^x&. Sinced^x&5(]^x&/]D1)dD1, we have by
integration,

dV5WE D1

]^x&
]D1

dD1 . ~2.4!

Here, the average is taken with respect to the Boltzm
distribution exp@2V(x)/T# ~in units such thatkB51),

]^x&
]D1

52
W

T
@^x2&2^x&2#. ~2.5!

We evaluate the right-hand side for zero restoring force c
stant, D250, and find ^x2&50.338(T/W)1/2 and ^x&50.
Equation ~2.4! then gives the energy required to genera
small stress in the liquid,

dV520.169
W3/2

T1/2
D1
2 . ~2.6!

The energy required to generate a small stressD1 at D250
follows dW52dV. Buchenau and co-workers argue@33#
that thermal stress is frozen in the liquid atTg and propose
that the Boltzmann factor exp(2dW/Tg) gives the distribution
of the linear coefficientD1,

p1~D1!50.231S TgWD 3/4expF20.169S WTgD
3/2

D1
2G . ~2.7!

That is, the coefficient of the linear term of the soft potent
is a Gaussian random variable with varian
^D1

2&53.96(Tg /W)3/2. For temperaturesT@Tg , the liquid is
capable of rearranging its atomic configurations such t
thermal stress vanishes. In the limitTg→0, thermal stress
vanishes at any nonzero temperature,

p1~D1!5d~D1!, Tg→0. ~2.8!

In Eq. ~2.7!, we neglect configurational rearrangements
the liquid, and assume that relaxation in supercooled liqu
is caused by particles hopping between potential ene
minima that are frozen in the liquid. Such rearrangements
important at higher temperatures, and give rise to ther
stress that depends explicitly on temperature. Stress field
glass-forming liquids have been investigated in molecu
dynamics simulations@36#. It is found that the stress ha
long-range order in the supercooled phase, while the nor
fluid cannot support this stress field.

The localization of soft modes is discussed in Ref.@37#.
The energy to distort a stable structure increases with
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6920 55U. ZÜRCHER AND T. KEYES
spatial extent of the instability. This restricts the participati
atoms to the close neighborhood of a single atom. A car
analysis gives an estimate of up to 100 atoms participatin
a localized mode@23#. This large number of particles ma
pose a difficulty in distinguishing between localized and e
tended modes in computer simulations. They rarely invo
more than 1000 particles and are thus capable of show
localization of 30 particles. For an extended mode,
atomic displacements are small, so that the anharmonici
experienced only via the combined action of all other mod

III. DENSITY OF UNSTABLE MODES

In the absence of thermal stressD150, the soft potential
describes symmetric double wells,V0(x)5W@2D2x

21x2#.
At zero temperature, the density of states contains o
stable modesg(v)52vp2(v

2/4W) for 0,v,V. For D1
Þ0, the soft potential describes both single and dou
wells, and the density of states depends on the distribut
of bothD1 andD2. At nonzero temperatures, the coordina
of each soft mode is weighed by the Boltzmann fac
exp@2V(x)/T#. The density of states then follows as

g~v!52vG~v2!, ~3.1!

whereG(v2) is the density of the square of frequencies,

G~v2!5 K dS d2Vdx2
2v2D L . ~3.2!

Here, the average is taken with respect to the coordinax
and the parameters of the soft potential. At nonzero temp
tures, the density of states contains stable (v2.0) as well as
unstable modes (v2,0). The fraction of unstable mode
increases with increasing temperature.

A temperature scale enters via the variance of the lin
term of the soft potential,̂D1

2&53.96(Tg /W)3/2. We con-
sider the supercooled phase of the liquid above the g
temperature,T.Tg . Introducing scaled coefficients and c
ordinates,

D15S TgWD 3/4D̃1 , ~3.3!

D25S TgWD 1/2D̃2 , ~3.4!

x5S TgWD 1/4x̃, ~3.5!

the ratioV/T follows,

V

T
5
Tg
T

@D̃1x̃2D̃2x̃
21 x̃ 4#, ~3.6!

so that the temperature enters the density of states via
combinationTg /T only. In particular, the Boltzmann facto
is independent of the energy scaleW. Below we take the
limit W→0 and then consider the limitsT→0 andTg→0,
such that the ratioT/Tg is constant. We demonstrate that
this limit, the density of states is uniquely defined.
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Furthermore, we may calculate the density of states fo
constant temperatureT and then study two limiting cases b
varying the glass temperatureTg . For T/Tg5O(1), we re-
cover the low-temperature limit while forT/Tg→`, the
high-temperature limit follows. In the latter case,Tg50 and
the linear term of the soft potential vanishes, i.
p1(D1)5d(D1).

Unstable modesv2,0 have imaginary frequencies
v5 in. From Eq.~3.2!, the density of unstable modes fo
lows:

Gu~n2!5 K dS d2Vdx2
1n2D L . ~3.7!

For a fixed pair of coefficients (D1 ,D2), we first take the
average with respect to the coordinatex. Since
d2V/dx252n25W@22D2112x2#, the roots are indepen
dent ofD1,

xn
656

1

A12
A2D22n2/W. ~3.8!

It follows that for a fixed frequencyn, the coefficientD2 is
bounded from below,

D2>Dc5
n2

2W
. ~3.9!

Because the coordinate is weighted by the Boltzmann
tor exp@2V(x)/T#, the average follows as

K dS d2Vdx2
1n2D L

x

5
1

Nx
H expS 2

V~xn
1!

T D 1expS 2
V~xn

2!

T D J ,
~3.10!

where

V~xn
6!5WD1xn

61V0~xn
6!. ~3.11!

In Eq. ~3.10!, the normalization is given by
Nx5*2`

` exp@2V(x)/T#dx. For D150, the potential has two
equivalent minima,

V0~xmin
6 !52

D2
2

4
, ~3.12!

at the coordinates

xmin
6 56AD2

2
. ~3.13!

The double-well structure is preserved for small values
D1. Defining Q52(D2/6)

31(D1/8)
2, double and single

wells follow forQ,0 andQ.0, respectively. For a double
well potential, we thus have the inequalityD2

3.(27/8)D1
2.

We recall thatD1 is a Gaussian random variable with ze
mean and variancêD1

2&53.96(Tg /W)3/2. Thus, the soft po-
tential has double-well structure for sufficiently large rest
ing force constants,D2

3.13.36(Tg /W)3/2. For a fixed fre-
quency n, the coefficient D2 is bounded from below
D2.n2/2W; cf. Eq. ~3.9!. We conclude that for large fre
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55 6921ANHARMONIC POTENTIALS IN SUPERCOOLED . . .
quencies,n.nc , the density of unstable states is dominat
by contributions from double wells, while for small freque
cies, n,nc , it is dominated by contributions from singl
wells. This frequency cutoffnc depends on the product of th
glass temperatureTg and the energy scaleW,

nc.2.18~TgW!1/4. ~3.14!

In the limit Tg→0, the cutoff is arbitrarily small,nc→0, and
all unstable modes originate from double-well potentials.
d For a large restoring force constant, the linear term of
soft potential is a small perturbation. In quadratic order
D1, the coordinates of the potential minima are given
x̃min

6 56AD2/22D1/4D27(3/16)AD2/2D1
2/D2

3. The poten-
tial minima then follow as Ṽmin5W@2D2

2/4
6D1AD2/22D1

2/8D2#. For a double-well potential, we hav
D2
2/4@D1

2/8D2, and the quadratic correction of the potent
can be neglected. It follows that the Boltzmann distributi
is a superposition of two Gaussians, and the normalizatio
given by
mit.
rm,

.

Nx5A pT

2WD2
expS 2

V0~xmin
6 !

T D H expS 2
WD1

T
xmin

1 D 1expS 2
WD1

T
xmin

2 D J , ~3.15!

whereV0(xmin
1 )5V0(xmin

2 )[V0(xmin
6 ).

We choose as a reference point the inflection point of the symmetric double welld2V0(x)/dx
250,

x05AD2

6
, ~3.16!

and find for nonzero frequenciesn2Þ0,

K dS d2Vdx2
1n2D L

x

.A2WD2

pT
expS 2

1

T
@V0~x0!2V0~xmin!#2

WuD1u
T

@xmin2x0# D
3expS 2

1

T
@V0~xn!2V0~x0!#2

WuD1u
T

@x02xn# D , ~3.17!

wherexn5xn
152xn

2 andxmin5xmin
1 5xmin

2 . The density of states of unstable modes now follows by taking the limitW→0 and
then considering the average with respect to the parameters of the soft potential; cf. the discussion following Eq.~3.6!.

Because the potentialV0(x) vanishes asW→0, the argument of the exponential function on the RHS is small in this li
We first take the average with respect to the uniform distribution ofD2 and truncate the cumulant expansion at the first te

K dS d2Vdx2
1n2D L

x,D2

.A2W^D2&
pT

expS 2
1

T
^@V0~x0!2V0~xmin!#&D2

2
WuD1u
T

^@xmin2x0#
2&D2

1/2D
3expS 2

1

T
^@V0~xn!2V0~x0!#&D2

2
WuD1u
T

^@x02xn#2&D2

1/2D . ~3.18!

Here, we replaced̂@xmin2x0#&D2 and ^@x02xn#&D2
by ^@xmin2x0#

2&D2
1/2 and ^@x02xn#2&D2

1/2, respectively. We recall from Eq

~3.9! that for a fixed frequencyn, the restoring constant is bounded from below,D2>n2/2W. We readily find
^D2&.@V2/8W1n2/4W#. Equations~3.8! and ~3.16! then give ^x0

21xn
2&5V2/24W and ^x0xn&5(12W)21AV4/162n4/4

.V2/48W2n4/24WV2 for n2→0. It follows that

K dS d2Vdx2
1n2D L

x,D2

.A V2

4pT
expS 2

1

432

V4

WT
2

1

3A10
W1/2VuD1u

T
2

1

144

V2n2

WT
2

1

A12
W1/2n2uD1u

VT D . ~3.19!

The quantityGu(0) now follows by settingn50 and taking the average with respect toD1. We have

K dS d2Vdx2 D L
x,D2

.A V2

4pT
expS 2

1

432

V4

WT
2

1

3A10
W1/2VuD1u

T D . ~3.20!



ty

t

do

e

i

-

.

un-
e

g

sity
by

for
sed

-
s
nd
to

r-
re
em-

lf-
e
r
s,
The

ime

at

gle
ro-
trib-

for
des
at
es
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Since^D1
2&53.96(Tg /W)3/2, the variance ofD1 diverges as

W→0. For a fixed energy scaleW, the combination
W1/2VuD1u/3A10T becomes large in the limituD1u→`.
Similarly, the average ^exp(W1/2VuD1u/3A10T)&D1

is determined by the behavior of the probabili
density p1(D1) for large values of D1. For
W.0, we replace ^exp(2W1/2VuD1u/3A10T)&D1

by

1/̂ exp(W1/2VuD1u/3A10T)&D1
and then consider the limi

W→0 such that the variance of the scaled Gaussian ran
variableD185W3/4D1 is finite, ^D18

2&,`. A Gaussian inte-
gration gives ^exp(W1/2VuD1u/3A10T)&D1

5exp(Tg
3/2V2/

20W1/2T2). We then have

Gu~0!.A V2

4pT
expS 2

1

432

V4

WT
2
1

20

Tg
3/2V2

W1/2T2D .
~3.21!

We introduce a dimensionless frequency and temperatur

V85
V

AW
, ~3.22!

T85
T

W
, ~3.23!

and find

Gu~0!.A V2

4pT
expS 2

1

432

V4

T
2
1

20

Tg
3/2V2

T2 D ,
~3.24!

where we replaced primed quantities by unprimed ones
simplify the notation.

We estimate the relative magnitude of the two terms
the argument of the exponential function by settingT5Tg .
We have Gu(0,T5Tg).AV2/4pTgexp(2V4/432Tg
2V2/20Tg

1/2). The first term dominates forV.4.64Tg
1/4.

Sincenc52.18Tg
1/4 @cf. Eq. ~3.14!#, we have for all tempera

turesT.Tg ,

Gu~0!.A V2

4pT
expS 2

1

432

V4

T D , nc,
V

2
. ~3.25!

That is,Gu(0) is independent of the glass temperatureTg .
We calculateGu(n

2) in a similar fashion. We insert Eq
~3.25! into Eq. ~3.19!,

Gu~n2!

Gu~0!
.

exp~2V2n2/144WT!

^exp~W1/2n2uD1u/A12VT!&D1

. ~3.26!

A Gaussian integration gives

Gu~n2!

Gu~0!
.expS 2

1

144

V2n2

WT
2
1

8

Tg
3/2n4

WV2T2D . ~3.27!

We introduce a dimensionless frequency,

n85
n

AW
, ~3.28!
m

,

to

n

cf. Eq. ~3.22!, and find

Gu~n2!

Gu~0!
.expS 2

1

144

V2n2

T
2
1

8

Tg
3/2n4

V2T2 D . ~3.29!

We observe that the temperature-dependent density of
stable modes is characterized by the glass temperaturTg
and the upper frequency cutoffV.

The density of states is given bygu(n)52nGu(n
2); cf.

Eq. ~3.1!. The high-temperature limit is obtained by settin
Tg50; cf. the discussion following Eq.~3.6!. We recover the
Arrhenius temperature dependence of the unstable den
for liquids in the normal phase that has been proposed
Vijayadamodar and Nitzan@10#,

gu~n!.2Gu~0!n expS 2
1

144

V2n2

T D , T@Tg .

~3.30!

For lower temperatures,T*Tg , we recover the Zwanzig-
Bässler temperature dependence of the unstable density
liquids in the supercooled phase that has first been propo
by Keyes@9#,

gu~n!.2Gu~0!n expS 2
1

8

Tg
3/2n4

V2T2 D , T*Tg . ~3.31!

Equations~3.30! and~3.31! together with the frequency cut
off nc52.18Tg

1/4 @cf. Eq.~3.14!#, are the central results of thi
section. Below we discuss implications of the frequency a
temperature dependence of the unstable INM spectrum
dynamic properties of the liquid.

IV. DIFFUSION CONSTANT

Instantaneous normal modes are defined via theshort-
timeexpansion of the equations of motion of individual pa
ticles in liquids, and solidlike aspects of liquid dynamics a
emphasized. Nevertheless, Keyes and co-workers have d
onstrated the usefulness of INM analysis to describelong-
timedynamical properties of cold liquids@4#. More recently,
collective modes were used in Ref.@38# to describe self-
diffusion in hot liquids above the melting point. The se
diffusion coefficient is approximated by the ratio of the tim
spent in a valleytv to the time spent in crossing a barrie
tb ,D.T1/2tb /tv . For liquid dynamics on short time scale
unstable modes are the signature of barrier crossings.
fraction of unstable modes is given byf u5*gu(n)dn @6#.
Using transition rate theory, Keyes estimates that short-t
and long-time properties are related to each other,tb /tv
} f u /(12 f u) @9#. Several other approximations suggest th
any strongT dependence ofD follows from the relation,
D(T); f u(T).

Unstable modes originate from both double and sin
wells. Because particle transport follows from hopping p
cesses, unstable modes from single wells should not con
ute to the self-diffusion constant. For frequenciesn.nc , all
unstable modes originate from double wells, whereas
n,nc , as we just have seen, the density of unstable mo
has large contributions from single wells. It follows th
INM theories of the diffusion constant should employ mod
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with n.nc only; wheref u appeared in earlier work, it shoul
be replaced byf u85*nc

` g(n)dn. Because the density of state

of unstable modes has exponential frequency dependen
nonzero cutoff gives a fraction that is exponentially sma
f u8;gu(nc),1. It then follows that the diffusion constant
exponentially small as well,

D;g~nc!. ~4.1!

In dimensionless units, the cutoff frequency depends o
on the glass temperature; cf. Eq.~3.14!,

nc52.18Tg
1/4. ~4.2!

Inserting Eqs.~4.1! and~4.2! into Eq.~3.30!, we find Arrhen-
ius behavior@11# for high temperatures,

D;expS 2
1

36

V2Tg
1/2

T D , T@Tg . ~4.3!

For lower temperatures, Zwanzig-Ba¨ssler behavior@12# fol-
lows from Eq.~3.31!,

D;expS 22
Tg
5/2

V2T2D , T*Tg . ~4.4!

Equations~4.3! and ~4.4! give the crossover temperatu
Tc , V2Tg

1/2/36Tc52Tg
5/2/V2Tc

2 , or

Tc572
Tg
2

V4 . ~4.5!

At the crossover temperature, the diffusion const
Dc5D(Tc) is given byDc;exp(2V6/2592Tg

3/2).
We readily express the crossover behavior of the diffus

constant in terms of characteristic energy scales of the
potential. We have found non-Arrhenius temperature dep
dence in the case when the linear term of the soft potenti
large compared to the quadratic term. Setti
WD1x5WD2x

2, we find that the linear term is larger tha
the quadratic term for small displacementsx,xc , while the
quadratic term is larger forx.xc . Here,xc5D1 /D2 and the
crossover energy follows asEc5WD1

2/D2. We replaceD1
2

by its averagêD1
2& and set the restoring force equal to

maximum value; cf. Eqs.~2.2!. This gives a lower bound fo
energies characterizing thermal stress in the liquid,

Ea516
Tg
3/2

V2 . ~4.6!

In the absence of thermal stress,D150, the soft potential is
given byV0(x)5W@2D2x

21x4#. The barrier height of the
symmetric double well follows asDV05WD2

2/4. Setting
D25V2/4W, we find the characteristic energy associa
with soft vibrational modes in the liquid,

Eb5
V4

64
. ~4.7!

In Eqs.~4.6! and~4.7!, we introduce dimensionless energie
E/W→E; cf. Eq. ~3.23!.
, a
,

ly

t

n
ft
n-
is

d

,

From Eq. ~4.5!, we have Tc /Tg572Tg /V
4. Since

(Ea /Eb)
2/35102Tg /V

4, we find

Tc
Tg

.0.7SEa

Eb
D 2/3. ~4.8!

At the crossover temperature, the diffusion constant follo

D~Tc!;expS 20.4
Eb

Ea
D . ~4.9!

Thus, the crossover between Arrhenius and Zwanzig-Ba¨ssler
behavior depends only on the ratioEa /Eb . ForEa.Eb , we
haveTc.Tg and Zwanzig-Ba¨ssler temperature dependen
follows for some nonzero temperature range aboveTg . For
Eb.Ea , on the other hand, the diffusion constant is ar
trarily small at T5Tc , and Arrhenius temperature depe
dence follows for all temperatures aboveTg . That is,
Ea.Eb applies to fragile liquids, whereasEb.Ea applies
to strong liquids@13#.

Stillinger relates various static and dynamic properties
glass-forming liquids to the multidimensional complex t
pography of the collective potential energy function@39#.
The topography of strong liquids is uniformly rough, an
only b-relaxation processes are relevant. In fragile liqui
individual local minima~‘‘basins’’! are organized in deepe
potential energy wells~‘‘craters’’!. It is only at high tempera-
tures that particles explore regions of the configuration sp
with uniformly rough topography, while at lower temper
tures, particles surmount larger and wider potential ene
barriers. This transition gives rise to the bifurcation of t
temperature dependence of the peak relaxation frequenc
liquids. In the equilibrium liquid range, the single absorpti
maximum peak has Arrhenius temperature dependence.
single maximum splits into a pair of maxima in the supe
cooled regime. The peak corresponding to fastb ~‘‘second-
ary’’ ! relaxation has Arrhenius behavior and persists even
the glassy phase. The peak originating from slowa ~‘‘pri-
mary’’! relaxation has non-Arrhenius behavior and is froz
out at the glass temperature. The connection with the pre
work is made by identifyingEa andEb with a lower limit of
energy barriers of craters and the characteristic energy
basins, respectively.

In fact, a more explicit connection can be made betwe
high-temperature behavior and fast dynamic processes in
uids. In the high-temperature limit, the soft potential d
scribes symmetric double wells. On short time scales,
particles perform harmonic oscillations around the poten
minima. The mean square displacement~MSD! of a har-
monic oscillator is given bŷ x2&v5T/v2. Replacing the
square of the frequency by the upper cutoff for the restor
force constant, we find the MSD characterizing fast p
cesses in liquids,

^x2&b5
4T

V2 . ~4.10!

The linear term of the soft potential describes stress tha
frozen in the liquid at the glass temperature. For zero res
ing force constant, D250, the MSD is given by
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^x2&50.338T1/2; cf. the discussion following Eq.~2.5!. Set-
ting T5Tg , we find the static contribution to the MSD,

^x2&static50.338Tg
1/2. ~4.11!

We use Eqs.~4.10! and ~4.11! to rewrite the high-
temperature limit of the diffusion constant,

D;expS 2
1

3

^x2&static
^x2&b

D , T@Tg . ~4.12!

Buchenau and Zorn report neutron time-of-flight measu
ments of atomic displacements for frequencies ab
1010Hz in glassy, liquid, and crystalline selenium@40#. They
observe a weak temperature dependence of the mean s
displacement in the ordered phase and a strong tempera
dependent enhancement in the disordered phase. They fi
linear relation between the logarithm of the viscosity and
inverse of the enhancement of the MSD. Since the visco
is proportional to the inverse of the diffusion constant, t
relation is in agreement with our prediction; cf. Eq.~4.12!.

V. DISTRIBUTION OF BARRIER HEIGHTS

Following our discussion of the diffusion constant, t
density of states of unstable modes reflects the topograph
the potential energy landscape of liquids. The landscape
sists of local minima separated by potential barriers, an
thus characterized by the distribution of barrier heights.
the soft-potential model, we define a barrier height for ea
pair of parameters (D1 ,D2). We have

DV5V~xn!2V~xmin!, ~5.1!

wherexn and xmin are given by the rootsd2V/dx21n250
and dV/dx50, respectively; cf. Eqs.~3.8! and ~3.13!. The
distribution of barrier heights is then defined as

P~E;n!5^d~E2DV!&D1 ,D2
. ~5.2!

Here,P(E;n) depends on the frequencyn through the de-
pendence on the coordinatexn . We calculate the average o
the right-hand side by inserting the Fourier representation
the d function, d(x)5(1/2p)*2`

` dqexp(iqx). We inter-
change the order of taking the average with respect to
parameters of the soft potential and integration,

P~E;n!5
1

2pE2`

`

dqexp~ iqE!^exp~2 iqDV!&D1 ,D2
.

~5.3!

The discussion of the preceding section suggests that
rier heights have different distributions in the high- and lo
temperature limits. ForT@Tg , we can neglect the linea
term of the soft potential,V(x).V0(x)5W@2D2x

21x4#,
-
e

are
re-
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e
ty
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h

of

e

ar-
-

P~E;n!5
1

2pE2`

`

dqexp~ iqE!^exp~2 iqDV0!&D2
, T@Tg .

~5.4!

For W→0, we replace ^exp(2iqDV0)&D2 by
exp(2iq^DV0&D2) @cf. Eq. ~3.18!#,

P~E;n!5
1

2pE2`

`

dqexp~ iq@E2^DV0&D2
# !, T@Tg .

~5.5!

Since

V0~xn!2V0~xmin!5@V0~xn!2V0~x0!#

1@V0~x0!2V0~xmin!#

~wherex0 is the inflection point ofV0(x) @cf. Eq. ~3.16!#!,
we readily find^DV0&D2

5V2n2/144W1V4/432W. We in-
troduce a dimensionless energy

E85
E

W
, ~5.6!

along with the dimensionless frequenciesV85V/AW and
n85n/AW; cf. Eqs. ~3.22! and ~3.28!. We find
P(E;n)5(1/2p)*2`

` dq exp(2iq@E2V2n2/1442V4/432#),
where we replaced primed quantities by unprimed ones.
q integration now yields P(E;n)5d(E2n2V2/144
2V4/432). The characteristic energy for fast processes
the liquid is given byEb5V4/64; cf. Eq.~4.7!. We finally
find the barrier height distribution in the high-temperatu
limit,

P~E;n!5dSE2
4

27
Eb2

1

18
AEbn2D , T@Tg . ~5.7!

Thus, fast processes in the liquid are associated with a
tential energy landscape that is uniformly rough.

For lower temperatures, the leading frequency dep
dence of the potential differenceDV originates from the lin-
ear term of the soft potential,

DV.@V0~x0!2V0~xmin!#2WuD1u@x02xn#, T*Tg .
~5.8!

The distribution of barrier heights now follows by taking th
average with respect to both parameters of the soft pote
@cf. Eq. ~5.3!#,

P~E;n!5~1/2p!*2`
` dq

3exp~ iqE!^exp~2 iq@V0~x0!2V0~xmin!#

1 iqWuD1u@x02xn#!&D1 ,D2
.

ForW→0, we proceed by first taking the average with r
spect to the restoring force constantD2,
P~E;n!5
1

2pE2`

`

dqexp~ iq$E2^@V0~x0!2V0~xmin!#&D2
%!^exp~ iqWuD1u^@x02xn#2&D2

1/2!&D1
, T*Tg . ~5.9!

Using ^@x02xn#2&D2
5n4/12WV2, we find
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P~E;n!5
1

2pE2`

`

dqexp~ iq@E2V4/432W# !^exp~ iqW1/2n2uD1u/A12V!&D1
, T*Tg . ~5.10!

The parameterD1 is a Gaussian random variable with variance^D1
2&53.96(Tg /W)3/2. In particular, the variance diverges a

W→0, and we cannot use a cumulant expansion to calculate the average with respect toD1; cf. the discussion preceding Eq
~3.21!. Rather, a Gaussian integration gives^exp(2iqW1/2n2uD1u/A12V)&D1

5exp(2q2Tg
3/2n4/8W1/2V2). We then have

P~E;n!5
1

2pE2`

`

dqexp~ iq@E2V4/432W# !expS 2
Tg
3/2n4

8W1/2V2q
2D , T*Tg . ~5.11!

It follows thatP(E;n)5(A2W1/4V/ApTg
3/4n2)exp(22W1/2V2@E2V4#2/Tg

3/2n4).
As above, we introduce a dimensionless energyE85E/W and frequenciesn85n/AW andV85V/AW. In Eq. ~4.6!, we

have found the characteristic energy for slow processes in the liquid,Ea516Tg
3/2/V2. We obtain

P~E;n!5
1

ApEan4/32
expS 2

32

Ean4 FE2
4

27
EbG2D , T*Tg . ~5.12!
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Thus, slow processes in the liquid are associated with a
ged potential energy landscape characterized by a Gau
distribution of barrier heights.

The two limiting barrier height distributions are in agre
ment with the temperature dependence of the diffusion c
stant. High-temperature Arrhenius behavior implies a sin
potential energy barrier for viscous flow in the liquid, whi
low-temperature Zwanzig-Ba¨ssler behavior of diffusion is
characteristic for random energy models@41#.

VI. SUMMARY AND DISCUSSION

The solidlike approach to liquid dynamics has been
vived in recent years largely by computer simulations.
stantaneous normal modes are obtained by diagonalizing
dynamic matrix for a representative configuration that h
been selected from a molecular-dynamics simulation. T
INM spectrum is obtained from a snapshot of the liquid a
describes the dynamics at short times. Nevertheless, fol
ing Zwanzig’s normal mode description of self-diffusion
liquids, the INM spectrum has been used to describe liq
dynamics on long time scales as well. This paper is a s
towards a clearer understanding of the relation between p
erties of the INM spectrum and those governing the ti
evolution of the liquid on long time scales. In supercool
liquids, the viscosity varies over more than 10 decad
Goldstein, and later Stillinger, showed that exponential te
perature dependence of viscous flow can be understood
a topographic viewpoint of the potential energy landscap
liquids. In this paper, we have shown that exponential f
quency and temperature dependence of the unstable lob
the INM spectrum is consistent with the inherent struct
approach to liquid dynamics.

We started by first establishing the relation between
localized nature of low-lying vibrational modes and their d
scription with the soft-potential model. We assumed that
fects are frozen in at the glass temperature, giving rise
stress in liquids. These properties define the model fr
which we then calculated the density of unstable modes
the high- and low-temperature limit, we recovered expon
g-
ian

n-
le

-
-
he
s
e
d
-

id
p
p-
e

s.
-
m
in
-
of
e

e
-
-
to
m
In
-

tial frequency and temperature dependence that were p
ously found in computer simulations. We further found
lower ~imaginary! frequency cutoff separating contribution
from single- and double-well potentials to the unstable d
sity of states. Using approximate formulas relating the fr
tion of unstable modes to the diffusion constant, we fou
Arrhenius temperature dependence of the diffusion cons
with a crossover to Zwanzig-Ba¨ssler dependence for tem
peratures close toTg . These two temperature regimes a
known to correspond to landscapes with uniform and Gau
ian barrier height distributions, respectively. The barr
height of a single mode is defined from the soft potential. W
derived the above energy distributions in the appropriate l
its. For a variety of systems~glass! transitions have been
identified in experiments probing the short-time dynami
Buchenau and Zorn have proposed a linear relation betw
the viscosity and the inverse of the mean-square displa
ment of the system’s particles for high frequencies. We
covered this relation from our expression for the hig
temperature limit of the diffusion constant, and th
identified the high-temperature limit with fastb-relaxation
processes and the low-temperature limit with slo
a-relaxation processes.

Analytical theories for the entire INM spectrum that ha
previously been proposed are based on the connection
tween the Laplace transform of the return probability of
random walker and the phonon density of states in dis
dered systems@42#. Wu and Loring generalize this approac
to higher dimensions, in which case atomic motions alo
d orthogonal directions are coupled@43#. They use
configuration-averaged transport properties of a rand
walker to calculate the frequency spectrum@44#. Using a
two-body approximation to the self-energy, they derive a
lytical expressions for the density of states that are in go
agreement with results from computer simulations
Lennard-Jones systems. The Green’s-function approac
INM spectra is further elaborated on in a paper by Wan a
Stratt @45#. Starting from expressions for the Green’s fun
tion derived from the replica method, they use a diagra
matic formulation to incorporate many-body effects in th
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theory. This refined theory gives a better representation
the unstable lobe of the INM spectrum. In an earlier vers
of this theory@46#, the distribution of the eigenvalues of th
dynamic matrix follows the ‘‘semicircle law.’’ Such a distri
bution is familiar from the theory of random matrices@47#,
and has recently been derived by Zwanzig for a highly c
nected random master equation@48#. The theories of Refs
@43# and@45# do not give simple analytic expressions for t
frequency dependence of the stable and unstable lobe o
INM spectrum, so that a comparison with the present the
cannot readily be made. This would be highly desirable ho
ever, since the analytic expressions derived here have
lowed us to associate unstable instantaneous normal m
with fast and slow dynamic processes in the liquid. The co
plexity of the Green’s function formalism reflects the fa
that the phononlike coordinates used in the random-walk
proach do not easily describe modes localized in coopera
rearrangement regions of finite size@49#.

In this paper, we considered the unstable density of st
only for the limiting cases of low,T*Tg , and high tempera-
tures,T@Tg . For intermediate temperatures, MD simul
tions of a Lennard-Jones system indicate that the freque
dependence of the unstable density interpolates smoothly
tween these limiting cases. Indeed, we show@50# that an
n,

J

s.
of
n

-

the
ry
-
al-
es
-

p-
ve

es

cy
e-

algebraic sum of the high- and low-temperature limits@cf.
Eqs.~3.30! and~3.31!#, gives an excellent fit to the unstab
density for a broad temperature range 0.5,T,20 ~whereT
is in reduced Lennard-Jones units!. This form of the unstable
density suggests that thermal stress varies in space, an
configuration space of the system consists of regions wh
topographies are characterized by uniform and Gaussian
tributions of barrier heights. It is shown in Ref.@51# that the
number of particles in correlated regions can be estima
from an analysis of the eigenvectors of the dynamic mat
Thus, instantaneous normal modes examine the energy l
scape as well as spatial correlations in the liquid. Such s
tial heterogeneity has recently been used to explain enha
translational diffusion of large probe molecules in a sup
cooled liquid (o-terphenyl! @52,53#. Spatial heterogeneity, in
addition to dynamic heterogeneity, plays a major role
theories of the glass transition@54–57#, and has been pro
posed as a possible mechanism for nonexponential relaxa
in supercooled liquids@58#.

ACKNOWLEDGMENT

This work has been supported by NSF Grant N
CHE9415216~TK!.
.

ys.

s.

v.

s
-
en-
@1# J. C. Maxwell, Philos. Mag.157, 49 ~1867!.
@2# J. Frenkel,Kinetic Theory of Liquids~Dover, New York,

1955!.
@3# R. Zwanzig, J. Chem. Phys.97, 4507~1983!.
@4# B. Madan, T. Keyes, and G. Seeley, J. Chem. Phys.92, 7565

~1990!; 94, 6762~1991!; G. Seeley, T. Keyes, and B. Mada
J. Chem. Phys.95, 3847~1991!.

@5# R. M. Stratt, Acc. Chem. Res.28, 201 ~1995!, and references
therein.

@6# U. Mohanty, Adv. Chem. Phys.89, 89 ~1995!.
@7# S. D. Bembenek and B. B. Laird, Phys. Rev. Lett.74, 936

~1995!; J. Chem. Phys.104, 5199~1996!.
@8# B. B. Laird and H. R. Schober, Phys. Rev. Lett.66, 636

~1991!; H. R. Schober and B. B. Laird, Phys. Rev. B44, 6746
~1991!.

@9# T. Keyes, J. Chem. Phys.101, 5081~1992!.
@10# G. V. Vijayadamodar and A. Nitzan, J. Chem. Phys.103, 2169

~1995!.
@11# P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62,

251 ~1990!.
@12# R. Zwanzig, Proc. Natl. Acad. Sci. USA85, 2029 ~1988!; H.
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